Abstract

Air pollution is well-known as a major risk to public health, causing various diseases including pulmonary and cardiovascular diseases. As social concern increases, the amount of air pollution data is increasing rapidly. The purpose of this study is to statistically characterize dependence between major cities in China based on a measure of directional dependence estimated from PM2.5 measurements. As a measure of the directional dependence, we propose the so-called copula directional dependence (CDD) using beta regression models. An advantage of the CDD is that it does not rely on strict assumptions of specific probability distributions or linearity. We used hourly PM2.5 measurement data collected at four major cities in China: Beijing, Chengdu, Guangzhou, and Shanghai, from 2013 to 2017. After accounting for autocorrelation in the PM2.5 time series via nonlinear autoregressive models, CDDs between the four cities were estimated to produce directed network structures of statistical dependence. In addition, a statistical method was proposed to test the directionality of dependence between each pair of cities. From the PM2.5 data, we could discover that Chengdu and Guangzhou are the most closely related cities and that the directionality between them has changed once during 2013 to 2017, which implies a major economic or environmental change in these Chinese regions.

Highlights

  • Air pollution has become a significant environmental and social problem in China

  • The PM2.5 values predicted by the estimated feedforward neural networks are illustrated in Fig 4, which are for the year 2013

  • We presented a statistical measure of directional dependence which is called copula directional dependence (CDD)

Read more

Summary

Introduction

Air pollution has become a significant environmental and social problem in China. PM2.5 refers to the concentration of atmospheric fine particulate matter (PM) whose diameter is 2.5μm. Exposure to PM2.5 is associated with increased mortality rates caused by lung cancer and cardiopulmonary diseases [1,2,3,4]. It is generally accepted that PM2.5 is more harmful to human health than PM with diameter > 2.5μm and 10μm (PM10) [5, 6]. Sources of particulate matter include residential wood burning, coal-fired thermal power generation, agricultural burning, diesel fuel combustion, and natural/industrial dust. PM2.5 can be generated indirectly when gases and particles interact in the air.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.