Abstract

Despite the extensive search for the detection of the dark matter (DM), experiments have yielded null results: they are probing lower and lower cross-section values and touching the so-called neutrino floor. A way to possibly overcome the limitation of the neutrino floor is a directional sensitive approach: one of the most promising techniques for directional detection is nuclear emulsion technology with nanometric resolution. The NEWSdm experiment in the Gran Sasso underground laboratory in Italy is based on a novel nuclear emulsion acting both as the Weakly Interactive Massive Particle (WIMP) target and as the nanometric-accuracy tracking device. This would provide a powerful method of confirming the Galactic origin of the dark matter, thanks to the cutting-edge technology developed to readout sub-nanometric trajectories. Here we discuss the experiment design, its physics potential, the performance achieved in test beam measurements and the near-future plans. After submitting a Letter of Intent, a new facility for emulsion handling was constructed in the Gran Sasso underground laboratory. A Conceptual Design Report was submitted to INFN in Summer 2021.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.