Abstract
Arcuate nucleus neuropeptide Y (NPY) neurons project within the hypothalamus and to several extrahypothalamic brain areas. Plasticity in the formation of arcuate NPY projections established postnatally may underlie the phenotypic characteristics of food intake and body weight. In this work we determined if directional cues for axonal outgrowth of NPY arcuate neurons exist in the adult brain. For this purpose, an embryonic (E15) arcuate nucleus of WT mice was grafted into the third ventricle of 2-week- and 2-month-old NPY knockout (KO) mice. One month after the transplantation, the distribution of NPY-positive terminals in the brains of NPY-KO mice was studied using immunohistochemistry. NPY-positive terminals were found inside of the grafted tissue as well as in the host hypothalamus, including the arcuate nucleus, the paraventricular and periventricular nuclei, the lateral hypothalamic and preoptic areas, and in extrahypothalamic areas such as the amygdala and the thalamic paraventricular nucleus. This pattern of distribution of NPY fibers was found in both groups of grafted mice. The brain areas reinnervated by NPY-positive terminals in the NPY-KO mice closely corresponded to the normal targets for the arcuate NPY neurons as revealed by the distribution of agouti gene-related protein immunoreactivity. Our data show that directional cues for NPY arcuate nucleus projections are present in the adult brain, suggesting their involvement in the formation of normal arcuate NPY connections and a possibility for their functional reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.