Abstract

The spreading of a miscible liquid with a low surface tension on a water surface generates the directional motion of submerged polymer hydrogels, which could be attributed to convective flows resulting from the gradient of surface tension along the surface (Marangoni effect). The direction and velocity of this motion can be well controlled by altering the driving conditions. Furthermore, a spherical hydrogel can smartly find the path to walk through a microfluidic maze when liquid mixing occurs near the maze exit. This convenient chemical driving approach to transporting submerged objects in a desired way may be useful in microfluidics, micromechanics, and other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.