Abstract

Both adaptation and perceptual learning can change how we perceive the visual environment, reflecting the plasticity of the visual system. Our previous work has investigated the interaction between the two aspects of visual plasticity. One of the main findings is that multiple days of repeated motion adaptation attenuates motion aftereffect, which is explained by habituation of motion adaptation. Interestingly, there was almost no transfer of the effect to the untrained adapter, which differed from the trained adapter in the features including retinotopic location, spatiotopic location, and motion direction. Given that the reference frame of motion aftereffect is proposed to be retinotopic, it remains unclear whether the effect we refer to as habituation effect of motion adaptation is more like a special type of motion adaptation or not. Therefore, in three experiments, we examined the role of retinotopic location, spatiotopic location, and motion direction on the transfer of habituation, respectively. In each experiment, only one of the features was kept the same for the trained and untrained conditions. We found that the habituation effect transferred across both the retinotopic and spatiotopic locations as long as the adapting direction remained the same. The findings indicate that the effect we refer to as habituation of motion adaptation is anchored neither in eye-centered (retinotopic) nor world-centered (spatiotopic) coordinates. Rather, it is specific to the direction of the adapter. Therefore, the habituation effect of motion adaptation cannot be ascribed to a variant of motion adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call