Abstract

This paper points out a critical issue in the study of estimating the azimuth of ground sources by using the polarization characteristics of Rayleigh waves: even if the signal quality is good, the degree of polarization of Rayleigh waves varies across different frequency bands, and the band with the strongest energy is not the one with the lowest azimuth error. A direction of arrival estimation method for ground sources based on optimally polarized Rayleigh waves using a single three-component geophone is presented in this paper. First, the reciprocal ellipse rate, flatness coefficient, and the angle between the semi-minor axes and the horizontal plane are selected as the polarization parameters of this method according to two quantitative principles. Then the frequency band range of the optimal polarization Rayleigh wave is determined by analyzing the sum of the weights of the three polarization parameters in different frequency bands. After filtering and combining with the existing surface wave analysis method, the actual data bearing estimation result with an average error of only 4.95 degrees and a standard deviation of only 1.82 degrees is obtained. It is also found that the signal-to-noise ratio approximates the exponential decay of the direction of arrival error obtained by this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call