Abstract

MUSIC algorithm is an effective method in solving the direction-finding problems. Due to the good performance of this algorithm, many variations of it including tesnor-MUSIC for verctor-sensor arrays, have been developed. However, these MUSIC-based methods have some limitations with respect to the number of sources, modeling errors and the noise power. It has been shown that using 2qth-order $$(q>1)$$ statistics in MUSIC algorithm is very effective to overcome these drawbacks. However, the existing 2q-order MUSIC-like methods are appropriate for scalar-sensor arrays, which only measure one parameter, and have a matrix of measurements. In vector-sensor arrays, each sensor measures multiple parameters, and to keep this multidimensional structure, we should use a tensor of measurements. The contribution of this paper is to develop a new tensor-based 2q-order MUSIC-like method for vector-sensor arrays. In this regard, we define a tensor of the cumulants which will be used in the proposed algorithm. The new method is called tensor-2q-MUSIC. Computer simulations have been used to compare the performance of the proposed method with a higher-order extension of the conventional MUSIC method for the vector-sensor arrays which is called matrix-2q-MUSIC. Moreover, we compare the performance of tensor-2q-MUSIC method with the existing second-order methods for the vector-sensor arrays. The simulation results show the better performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.