Abstract

Janus metasurfaces, a category of two-faced two-dimensional (2D) materials, are emerging as a promising platform for designing multifunctional metasurfaces by exploring the intrinsic propagation direction (k-direction) of electromagnetic waves. Their out-of-plane asymmetry is utilized for achieving distinct functions selectively excited by choosing the propagation directions, providing an effective strategy to meet the growing demand for the integration of more functionalities into a single optoelectronic device. Here, we propose the concept of direction-duplex Janus metasurface for full-space wave control yielding drastically different transmission and reflection wavefronts for the same polarized incidence with opposite k-directions. A series of Janus metasurface devices that enable asymmetric full-space wave manipulations, such as integrated metalens, beam generators, and fully direction-duplex meta-holography, are experimentally demonstrated. We envision the Janus metasurface platform proposed here to open new possibilities toward a broader exploration of creating sophisticated multifunctional meta-devices ranging from microwaves to optical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.