Abstract

Ambient neutron dose equivalent from 20 MeV protons incident on thick Be and Cu targets are measured at 0 degrees, 30 degrees, 60 degrees and 90 degrees with respect to the beam direction using a conventional dose equivalent meter. The neutron spectra calculated using nuclear reaction model codes ALICE, PRECO and earlier reported empirical expressions are converted to the ambient dose equivalent using the ICRP fluence-to-dose conversion coefficients and are compared with the measured values. The experimental energy spectra reported in the literature for 19.08 MeV protons incident on a thick Be target are also converted to ambient neutron dose equivalent and are compared with the present experimental results. It is observed that the values estimated from the neutron spectra obtained from the nuclear reaction codes are unable to predict the measured values. The results obtained from the reported experimental energy spectra compare well with the results obtained here. An empirical relation that was used to calculate the directional dependence of the measured neutron dose equivalent from heavy ion-induced reactions is used in this study to check its effectiveness for proton-induced reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call