Abstract
Halide ferroelectric materials have garnered a lot of interest because of their distinctive electrical and structural characteristics. In this study, the design and development of a new non-centrosymmetric 2D layered halide double perovskite material, Cl1.14Br2.86PA4AgInBr8 (CPAIn) is reported. This material shows ferroelectric properties above room temperature, with a Curie temperature of 190 °C. This behavior is achieved through the substitution of the halogenated A-site organic linker, 3-chloropropylammonium. CPAIn exhibits anisotropic ferroelectric behavior with higher spontaneous polarization of 6.25 µC cm-2 along the perpendicular direction to the octahedral layers, whereas the value decreases to 0.174 µC cm-2 between sheets. While using bottom contact to study the nature of polarity within a sheet, the P-E loop displays capacitive loop. The nature and value of polarization is highly direction dependent, and to further understand the mechanism of conduction, a combination of temperature-dependent impedance studies and poling dependent conductivity techniques are employed. These directional dependent properties hold immense potential in memory devices, sensors and photovoltaics, piezoelectric devices and energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.