Abstract

Pure Mg consisting of elongated grains was fabricated by the directional solidification process, and its compressive properties were investigated at room temperature, 473 and 773 K under the conditions where the angle between the long axis direction of the elongated grains and the compression direction was 0, 45 and 90 degree. At room temperature, the specimen at the angle of 45 degree was fractured prior to e=0.3, although the specimens at the angles of 0 and 90 degree were not fractured even at e=0.3. In addition, the yield stress at the angle of 45 degree was higher than those at the angles of 0 and 90 degree. The (0002) basal planes were distributed at a tilt of 30–50 degree to the solidification direction. This was responsible for the higher yield stress at the angle of 45 degree. Also, the yield stress at the angle of 0 degree was lower than that at the angle of 90 degree. The lower yield stress at the angle of 0 degree was attributed to twinning. At 473 K, the yield stress at the angle of 45 degree decreased significantly. The large decrease in yield stress at the angle of 45 degree resulted from grain boundary sliding. At 773 K, the yield stresses were almost the same, irrespectively of the loading direction. Thus, compressive properties of the directionally solidified Mg were affected by the loading direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.