Abstract

We demonstrate a direction controllable linearly polarized laser from a dye-doped cholesteric liquid crystal (CLC) in a homogeneous cell coated with a metallic mirror on the inner side of a glass substrate. Due to coherent superposition of two orthogonal polarization states, the output laser light becomes linearly polarized and its output energy is greatly enhanced. Moreover, the linear polarization direction angle is proportional to the product of the CLC effective birefringence and cell gap. Hence direction tunable laser devices can be demonstrated by controlling the cell gap and the operating temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.