Abstract
Recently more and more people focus on k-nearest neighbor (KNN) query processing over moving objects in road networks, e.g., taxi hailing and ride sharing. However, as far as we know, the existing k-nearest neighbor (KNN) queries take distance as the major criteria for nearest neighbor objects, even without taking direction into consideration. The main issue with existing methods is that moving objects change their locations and directions frequently over time, so the information updates cannot be processed in time and they run the risk of retrieving the incorrect KNN results. They may fail to meet users’ needs in certain scenarios, especially in the case of querying k-nearest neighbors for moving objects in a road network. In order to find the top k-nearest objects moving toward a query point, this paper presents a novel algorithm for direction-aware KNN (DAKNN) queries for moving objects in a road network. In this method, R-tree and simple grid are firstly used as the underlying index structure, where the R-tree is used for indexing the static road network and the simple grid is used for indexing the moving objects. Then, it introduces the notion of “azimuth” to represent the moving direction of objects in a road network, and presents a novel local network expansion method to quickly judge the direction of the moving objects. By considering whether a moving object is moving farther away from or getting closer to a query point, the object that is definitely not in the KNN result set is effectively excluded. Thus, we can reduce the communication cost, meanwhile simplify the computation of moving direction between moving objects and query point. Comprehensive experiments are conducted and the results show that our algorithm can achieve real-time and efficient queries in retrieving objects moving toward query point in a road network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.