Abstract
The 2D-discrete cosine transform (2D-DCT) is one of the popular transformation for video coding. Yet, 2D-DCT may not be able to efficiently represent video data with fewer coefficients for oblique featured blocks. To further improve the compression gain for such oblique featured video data, this paper presents a directional transform framework based on direction-adaptive fixed length discrete cosine transform (DAFL-DCT) for intra-, and inter-frame. The proposed framework selects the best suitable transform mode from eight proposed directional transform modes for each block, and modified zigzag scanning pattern rearranges these transformed coefficients into a 1D-array, suitable for entropy encoding. The proposed scheme is analysed on JM 18.6 of H.264/AVC platform. Performance comparisons have been made with respect to rate-distortion (RD), Bjontegaard metrics, encoding time etc. The proposed transform scheme outperforms the conventional 2D-DCT and other state-of-art techniques in terms of compression gain and subjective quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.