Abstract
The valley degree of freedom that results from broken inversion symmetry in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) has sparked a lot of interest due to its huge potential in information processing. In this experimental work, to optically address the valley-polarized emission from three-layer (3 L) thick WS2 at room temperature, we employ a SiN photonic crystal slab that has two sets of holes in a square lattice that supports directional circular dichroism engendered by delocalized guided mode resonances. By perturbatively breaking the inversion symmetry of the photonic crystal slab, we can simultaneously manipulate s and p components of the radiating field so that these resonances correspond to circularly polarized emission. The emission of excitons from distinct valleys is coupled into different radiative channels and hence separated in the farfield. This directional exciton emission from selective valleys provides a potential route for valley-polarized light emitters, which lays the groundwork for future valleytronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.