Abstract
AbstractWe show that metal–organic frameworks, based on tetrahedral pyridyl ligands, can be used as a morphological and structural template to form a series of isostructural crystals having different metal ions and properties. An iterative crystal‐to‐crystal conversion has been demonstrated by consecutive cation exchanges. The primary manganese‐based crystals are characterized by an uncommon space group (P622). The packing includes chiral channels that can mediate the cation exchange, as indicated by energy‐dispersive X‐ray spectroscopy on microtome‐sectioned crystals. The observed cation exchange is in excellent agreement with the Irving–Williams series (Mn<Fe<Co<Ni< Cu>Zn) associated with the relative stability of the resulting coordination nodes. Furthermore, we demonstrate how the metal cation controls the optical and magnetic properties. The crystals maintain their morphology, allowing a quantitative comparison of their properties at both the ensemble and single‐crystal level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.