Abstract

With the help of molecular dynamics simulations we show that an arbitrary nonmagnetic active particle with a size below one micrometer, being immersed in a suspension of magnetic nanoparticles, can diffuse faster along the direction of an applied field than perpendicular to the latter. This effect is demonstrated in monodisperse and polydisperse systems of magnetic nanoparticles for magnetic fields of moderate strength. The ability to direct a nonmagnetic active particle along the magnetic field stems from the formation of chains of magnetic nanoparticles aligned with the field direction. Such chains form effective channels through which the active particle can diffuse. We combine the investigations of the diffusion and transport efficiency of the active particle parallel and perpendicular to the field with the structural analysis of the magnetic nanoparticle system and find that the ability to direct an active particle of a given size can be maximized by changing magnetic particle concentration. The optimal transport efficiency is achieved at a concentration of magnetic material that provides a mean width of the effective tunnels that matches the effective size of the active particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.