Abstract

Dynamic chemistry, which falls into the realm of both supramolecular and covalent chemistry, enables intriguing properties, such as structural diversity, self-healing, and adaptability. Due to robustness of covalent bonds compared to noncovalent ones, dynamic covalent chemistry has been exploited to synthesize complex molecular nanostructures at solid/liquid interfaces under ambient conditions, generally responsive to internal factors that directly regulate intermolecular covalent bonds. However, directing dynamics of covalent nanostructures, e.g., the typical ring-chain equilibria, on surface by extrinsic interactions remains elusive and challenging. Herein, we have controllably directed the ring-chain equilibrium of covalent organometallic structures by regulating intermolecular electrostatic interactions, thus achieving on-surface dynamic covalent chemistry under ultrahigh vacuum conditions. Our findings unravel the dynamic mechanism of covalent polymers governed by weak intermolecular interactions at the submolecular level, which not only bridges the gap between supramolecular and covalent chemistry but also offers great opportunities for the fabrication of adaptive polymeric nanostructures that respond to different conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.