Abstract

Since articular cartilage is avascular, both nutrient supply and metabolic waste excretion depend on diffusion. However, the major cause of the progression of articular cartilage defect is the poor inherent regenerative capacity of chondrocytes which limits the process of cartilage tissue repair. Creation of nutrient gradients in in vitro cell culture, however, can provide a clue on zonal distributions of cells and glycosaminoglycan synthesis throughout the tissue engineered cartilage. We hypothesized that glucose gradient, in combination with growth factors, could induce differences in matrix distributions for articular cartilage regeneration. Chondrocytes were harvested from bovine cartilage and expanded in monolayers. First, either p0 or p2 chondrocytes were differentiated in serum-free chondrogenic medium containing different glucose concentrations supplemented with TGFβ3/dex or IGF-1under hypoxic or normoxic conditions for 7 days in monolayer. The results indicate that cellular metabolism, cell numbers and glycosaminoglycan (GAG) content increased with increase in glucose concentration in all conditions. Aggrecan (AGC) expression consistently increased with decreasing glucose concentration in both normoxic and hypoxic conditions. COL II and COL I expressions increased with increasing glucose concentration up to 5mmol/L. The expression of COMP increased with increasing glucose concentration under hypoxic conditions and interestingly showed an opposite trend under normoxic conditions. However, comparing the chondrogenic capacity of p0 and p2 cells in the different glucose concentrations did not show differences, but the potential of p2 cells was in general lower compared to p0. Hypoxia had stimulatory effects on matrix production compared to normoxia in both passages. Therefore, supplemented glucose concentration in monolayer could induce differences in matrix production, but the chondrogenic potential remained equal. Therefore, this information could be use to a create gradients through a tissue-engineered cartilage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call