Abstract

Miniaturized microfluidic electrochemical energy devices can produce power without the need for a separator reducing a considerable amount of fabrication complications. Enzymatic biofuel cells, with glucose as a fuel, are capable of producing energy from biological fluids in the presence of biocatalysts. The tedious fabrication procedures can be avoided by making electrodes and microchannel using laser ablation technique on polyimide substrates. In this work, a microfluidic enzymatic biofuel cell (MEBFC) has been presented with CO2 laser-ablated microchannel and bioelectrodes using a mediatorless approach. Multiwalled carbon nanotubes (MWCNT) have been used as a promoter to enhance the electron transfer rate. The fabricated MEBFC shows good power performance supplying [Formula: see text]/cm2 with a maximum open-circuit voltage of 260 mV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call