Abstract
Using total internal reflection fluorescence microscopy (TIRFM), we have observed the directed motion of 20 nm probe particles on specific regions of surfaces that exhibited strong gradients of hydrophobicity. Patterned surfaces were prepared by selective photodegradation (using a contact photomask) of a hydrophobically modified fused silica surface. The lateral distribution of hydrophobicity was characterized in situ using the selective affinity of amphiphilic probes (i.e., hydrophobic interaction microscopy). Probe particles were observed to move unidirectionally from regions of lower to higher to hydrophobicity over distances of approximately 1 microm when the hydrophobicity gradient was greater than d(cos theta)/dx = 0.05 +/- 0.02 microm(-1), where theta is the water contact angle on the bare surface. Only adsorption events were observed on energetically homogeneous surface regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.