Abstract

4,6-α-Glucanotransferases (4,6-α-GTs) convert amylose V into two types of differently structured products: a linear product connected by continuous α,1 → 6 bonds, such as isomalto/malto-polysaccharide (IMMP), and a highly branched product connected by alternating α,1 → 4 and α,1 → 6 bonds, such as reuteran-like polysaccharide (RLP). The synthesis process of 4,6-α-GT products is unclear, and exploring this process is significant for producing dietary fibers with potential applications. This study identified and expressed Geobacillus sp. 12AMOR1 GtfD-ΔC and Bacillus sporothermodurans GtfC-ΔC. After characterizing their products through 1H NMR and enzymatic fingerprinting, we found that GtfD-ΔC synthesized RLP with 29% α,1 → 6 bonds, and GtfC-ΔC synthesized IMMP with 71% α,1 → 6 bonds. The maltoheptaose incubation experiment showed different chain-length transfer patterns of two 4,6-α-GTs, GtfC-ΔC and GtfD-ΔC, transferring single and multiple glucose residues in each transglycosylation reaction, respectively. Site-directed mutagenesis confirmed that positions S345 and I347 influence the product structure of GtfC-ΔC, and the S345T/I347V mutation changed the GtfC-ΔC product to a linear product connected by alternating α,1 → 4 and α,1 → 6 bonds (pullulan-like polysaccharide) and altered the chain-length transfer pattern of GtfC-ΔC. We proposed that different chain-length transfer patterns between GtfD-ΔC and GtfC-ΔC may explain their differences in product structures. These findings are significant for obtaining the desired dietary fiber by engineering 4,6-α-GT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call