Abstract

We investigate the quantum transport dynamics of periodically delta-kicked Bose–Einstein condensate under the effect of spatially modulated nonlinear interactions. The spatial modulation frequency can dramatically affect the transport behaviors of the ultra-cold atoms. For odd frequency, the linear growth of the directed current is close to that of the noninteracting case for not very strong nonlinear interaction. Both the acceleration and the quantum state evolution gradually approach that of the noninteracting case with increasing frequency. For other values of frequency, a very weak nonlinear interaction can dramatically reduce the linear growth of the directed current. The quantum state evolution differs rapidly from that of the noninteracting case. The underlying dynamic mechanism is uncovered and some important implications are addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.