Abstract

The airway epithelium consists of diverse cell types, including neuroendocrine (NE) cells. These cells are thought to function as chemoreceptors and as a component of the stem cell niche as well as the cells of origin in small-cell lung cancer. NE cells often localize at bifurcation points of airway tubes, forming small clusters called neuroepithelial bodies (NEBs). To investigate NEB development, we established methods for 3D mapping and ex vivo 4D imaging of developing lungs. We found that NEBs localize at stereotypic positions in the bifurcation area irrespective of variations in size. Notch-Hes1 signaling contributes to the differentiation of solitary NE cells, regulating their number but not localization. Live imaging revealed that individual NE cells migrate distally to and cluster at bifurcation points, driving NEB formation. We propose that NEB development is a multistep process involving differentiation of individual NE cells and their directional migration to organize NEBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.