Abstract

A new series of smectic C* (SmC*) mesogens containing a chiral (R)-2-octyloxy side chain and either a fluorenone (2a-e) or chiral fluorenol (3a-e) core were synthesized using a combined directed ortho metalation-directed remote metalation strategy. The SmC phase formed by the fluorenol mesogens is more stable and has a wider temperature range than that formed by the fluorenone mesogens, which may be ascribed to intermolecular hydrogen bonding according to variable-temperature FT-IR measurements. The C11 fluorenol mesogens (R,R)-3d and (S,R)-3d were obtained in diastereomerically pure form and gave reduced polarization (Po) values of +106 and +183 nC/cm2, respectively, at 10 K below the SmA*-SmC* phase transition temperature. The difference in Po values suggests that the chiral fluorenol core contributes to the spontaneous polarization of the SmC* phase. This is ascribed to the bent shape of the fluorenol core, which should restrict its rotation with respect to the side chains in the SmC* phase and favor one orientation of its transverse dipole moment along the polar axis, and to steric coupling of the core to the chiral 2-octyloxy side chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.