Abstract

Background and ObjectiveElectroencephalography (EEG) signals are crucial to decipher various brain activities. However, these EEG signals are subtle and contain various artifacts, which can happen due to various reasons. The main aim of this paper is to develop an explainable novel machine learning model that can identify the cause of these artifacts. Material and methodA new EEG signal dataset was collected to classify various types of artifacts. This dataset contains eight classes: seven are artifacts, and one is the EEG signal without artifacts. A novel feature engineering model has been proposed to classify these artifact classes automatically. This model contains three main steps: (i) feature generation with the proposed transition table pattern (TTPat), (ii) the proposed cumulative weight-based iterative neighborhood component analysis (CWINCA)-based feature selection, and (iii) classification using t algorithm-based k-nearest neighbors (tkNN). The novelty of this work is TTPat feature extractor and CWINCA feature selector. Channel-based transformation is performed using the proposed TTPat, which extracts 392 features from the transformed EEG signal. A novel CWINCA feature selector is proposed. The artifacts are classified using tkNN algorithm. ResultsThe proposed TTPat and CWINCA-based feature engineering model obtained a classification accuracy ranging from 66.39% to 97.69% for 30 cases. We presented the explainable results using a new symbolic language termed Directed Lobish. ConclusionsThe results and findings demonstrated that the proposed explainable feature engineering (EFE) model is good at artifact detection and classification. Directed Lobish has been presented to obtain explainable results and is a new symbolic language.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.