Abstract

High-power pulsed-microwave radiation damages anthrax spores by apparent sonoluminescence in aqueous solutions containing the organic semiconductor diazoluminomelanin (DALM). DALM biosynthesized by JM109 E. coli, containing the plasmid pIC2ORNR/sub 1.1/, had a higher affinity for spores of Sterne strain anthrax when compared to several other species of bacilli and enhanced the effect. Upon exposure to pulsed-microwave radiation, anthrax spores showed a maximum of 4 to 5 (i.e., 4.6) logs of kill. The light emitted was typical of plasma gas emissions and the spores, upon scanning electron-microscopic examination, showed enlargement and rupture typical of rapid expansion. Therefore, microwave-induced cavitations localized to the spore surfaces enhanced kill.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.