Abstract

Capture of CO2 from power generation is required for its conversion or sequestration. Toward this goal, numerous CO2 capture processes have been developed, with the most widely deployed technology utilizing aqueous solutions of amines. Our group has focused on the design of several classes of water-lean solvents in order to identify molecular-level descriptors to control materials properties such as viscosity and regeneration energy. Density functional theory calculations and classical molecular dynamic simulations have shown that strategic placement of hydrogen bonding and tuning of the acid/base equilibria are critical for controlling viscosity at CO2-rich loadings. Here, we extend these principles to a new class of pyridine-based molecules with a secondary amine functionality for binding CO2. The result is a class of water-lean amines that retains high gravimetric capacity (20%) while exhibiting the lowest CO2-rich viscosities (<150 cP, 40 °C) of any 100% concentrated amine currently known. Additionall...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.