Abstract
The previously unknown silylgermylidyne radical (H3 SiGe; X2 A'') was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2 Π) with germane (GeH4 ; X1 A1 ) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium-hydrogen bond forming the germylsilyl radical (H3 GeSiH2 ). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2 GeSiH3 ), which undergoes a hydrogen shift to an exotic, hydrogen-bridged germylidynesilane intermediate (H3 Si(μ-H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3 SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon-germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2 H5 ) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon-germanium species at the microscopic level exploiting crossed molecular beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.