Abstract

Though making up nearly half of the known CRISPR-Cas9 family of enzymes, the Type II-C CRISPR-Cas9 has been underexplored for their molecular mechanisms and potential in safe gene editing applications. In comparison with the more popular Type II-A CRISPR-Cas9, the Type II-C enzymes are generally smaller in size and utilize longer base pairing in identification of their DNA substrates. These characteristics suggest easier portability and potentially less off-targets for Type II-C in gene editing applications. We describe identification and biochemical characterization of a thermophilic Type II-C CRISPR-Cas from Acidothermus cellulolyticus (AceCas9). We describe several library-based methods that enabled us to identify the PAM sequence and elements critical to protospacer mismatch surveillance of AceCas9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call