Abstract
Nonribosomal peptides are important natural products biosynthesized by nonribosomal peptide synthetases (NRPSs). Adenylation (A) domains of NRPSs are highly specific for the substrate they recognize. This recognition is determined by 10 residues in the substrate-binding pocket, termed the specificity code. This finding led to the proposal that nonribosomal peptides could be altered by specificity code swapping. Unfortunately, this approach has proven, with few exceptions, to be unproductive; changing the specificity code typically results in broadened specificity or poor function. To enhance our understanding of A domain substrate selectivity, we carried out a detailed analysis of the specificity code from the A domain of EntF, an NRPS involved in enterobactin biosynthesis in Escherichia coli. Using directed evolution and a genetic selection, we determined which sites in the code have strict residue requirements and which are tolerant of variation. We showed that the EntF A domain, and other l-Ser-specific A domains, have a functional sequence space for l-Ser recognition, rather than a single code. This functional space is more expansive than the aggregate of all characterized l-Ser-specific A domains: we identified 152 new l-Ser specificity codes. Together, our data provide essential insights into how to overcome the barriers that prevent rational changes to A domain specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.