Abstract

Transcription factor-based biosensors are important tools in Synthetic Biology for the sensing of industrially valuable molecules and clinically important metabolites, therefore presenting applications in the bioremediation, industrial biotechnology, and biomedical fields. The directed evolution of allosteric transcription factors (aTFs) with the aim of altering effector specificity has the potential for the development of new biosensors to detect natural and nonnatural molecules, expanding the scope of available aTF-based biosensors. In this chapter, we delineate a general method for the directed evolution of aTFs. The theory of library design is discussed, along with the detailed methodology for an improved transformation of combined libraries, and the experimental search space by counterselection using fluorescence-activated cell sorting (FACS) is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call