Abstract

Protein labeling with a functional molecule is a technique widely used for protein research. The covalent reaction of self-labeling peptide tags with synthetic probe–modified small molecules enables tag-fused protein labeling with chemically diverse molecules, including fluorescent probes. We report the discovery, by in vitro directed evolution, of a novel 23-mer dibenzocyclooctyne (DBCO)-reactive peptide (DRP) tag using Systematic Evolution of Ligands by EXponential enrichment (SELEX) with a combination of a reconstituted cell-free translation system (PURE system) and cDNA display. The N- and C-terminal DRP truncations created a shorter 16-mer DBCO-reactive peptide (sDRP) tag without significant reactivity reduction. By fusing the sDRP tag to a model protein, we showed the chemical labeling and in-gel fluorescence imaging of the sDRP-fused protein using a fluorescent DBCO probe. Results showed that sDRP tag–mediated protein labeling has potential for use as a basic molecular tool in a variety of applications for protein research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.