Abstract
Here, we present directed energy deposition (DED) of wrought-like Al 5xxx AlMg alloy by Laser Engineered Net Shaping (LENS®). A transition from an Al 5083 gas atomized powder feedstock to Al 5754 characteristics of the as-deposited material due to selective evaporation of Mg was observed. Density values obtained by X-ray micro-computed tomography (μ-CT) were compared to those obtained by the Archimedes method. The latter indicated a relative density as high as 99.26%. Possible origins of porosity are discussed. The as-deposited material was comprised of both equiaxed and columnar grains with no preferred crystallographic orientation and mean grain size of 36 μm. The Young's modulus, yield stress, ultimate tensile strength, fracture strain, Poisson's ratio, and total ultimate strain energy (toughness) were determined by uniaxial tensile tests combined with digital image correlation (DIC). Fractography complemented the mechanical testing. A pulse-echo ultrasonic non-destructive test was used to obtain more accurate values of the Young's and shear moduli and to adjust the value of the yield strength accordingly. The measured mechanical properties meet the requirements of international standards for wrought Al 5754 in its annealed condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.