Abstract

AA7075 alloy is a high-strength aluminum alloy with properties enhanced by heat treatments. However, like most high-strength aluminum alloys, AA7075 is non-weldable, as it suffers from hot cracking when it is welded or additively manufactured with fusion techniques. A proposed way to reduce the hot cracking tendency is by refining the microstructure by adding nucleation enhancers. In this study, AA7075 powder feedstock was functionalized with 1.7 and 3.4 vol% TiC nanoparticles, printed with laser-directed energy deposition (DED), subjected to T6 heat treatment, and characterized with optical and electron microscopy, electron backscatter diffraction (EBSD), and hardness measurements. Although TiC was not homogeneously distributed in the aluminum matrix, the addition of TiC successfully suppressed hot cracking by inhibiting dendritic growth produced by increased and more uniform nucleation, which resulted in refined equiaxed grains, and thus enhanced the printability of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.