Abstract

The neurocognitive characteristics of mathematically gifted adolescents are characterized by highly developed functional interactions between the right hemisphere and excellent cognitive control of the prefrontal cortex, enhanced frontoparietal cortex, and posterior parietal cortex. However, it is still unclear when and how these cortical interactions occur. In this paper, we used directional coherence analysis based on Granger causality to study the interactions between the frontal brain area and the posterior brain area in the mathematical frontoparietal network system during deductive reasoning tasks. Specifically, the scalp electroencephalography (EEG) signal was first converted into a cortical dipole source signal to construct a Granger causality network over the θ-band and γ-band ranges. We constructed the binary Granger causality network at the 40 pairs of cortical nodes in the frontal lobe and parietal lobe across the θ-band and the γ-band, which were selected as regions of interest (ROI). We then used graph theory to analyze the network differences. It was found that, in the process of reasoning tasks, the frontoparietal regions of the mathematically gifted show stronger working memory information processing at the θ-band. Additionally, in the middle and late stages of the conclusion period, the mathematically talented individuals have less information flow in the anterior and posterior parietal regions of the brain than the normal subjects. We draw the conclusion that the mathematically gifted brain frontoparietal network appears to have more “automated” information processing during reasoning tasks.

Highlights

  • Brain functional connections are described as the interrelationship of brain regions on neurophysiological activity, and the two brain regions that have similar dynamic characteristics over time provide a physiological basis for information processing and mental representation [1, 2]

  • Previous studies have found that mathematically gifted adolescents have highly developed right hemisphere functions, interactions with the prefrontal cortex, and enhanced cognitive control between the frontal-parietal cortex and the posterior parietal cortex. e parietal-frontal integration theory (P-FIT) model explains the function and interaction of functional units in the frontoparietal network in detail [3]

  • To overcome the phenomenon of volume conduction, this study conducts the EEG source localization of the collected EEG signals to further analyze the connectivity of the brain network in the cortical layer

Read more

Summary

Introduction

Brain functional connections are described as the interrelationship of brain regions on neurophysiological activity, and the two brain regions that have similar dynamic characteristics over time provide a physiological basis for information processing and mental representation [1, 2]. In addition to functional connectivity analysis, directed connectivity analysis is another research method for connectivity analysis of brain networks. Directed connectivity can reflect the mechanism of real information processing and reveal the interactions between different brain regions. It can assess how one brain network affects another. Previous studies have found that mathematically gifted adolescents have highly developed right hemisphere functions, interactions with the prefrontal cortex, and enhanced cognitive control between the frontal-parietal cortex and the posterior parietal cortex.

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.