Abstract

The dynamic conformational changes in the secondary structures of proteins are essential to their functions and can regulate diverse cellular events. Herein we report the design of a synthetic polymer-based secondary structure analogue of a zinc finger (ZnF) by introducing a zinc coordination motif to overcome the free energy barrier predicted by theoretical calculations and fold-free polymer chains. The conformational switching between unfolded and folded state of the ZnF analogue can be triggered in situ to drastically manipulate the accessibility of conjugated cell adhesive ligands to the cell membrane receptors, thereby effectively controlling the adhesion, spreading, mechanosensing, and differentiation of stem cells. We believe that emulating the dynamic secondary structures of proteins via rational design of a folded synthetic polymer-cation complex is a promising strategy for developing bioactive materials to mediate desired cellular functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.