Abstract

Understanding the neurophysiological mechanisms of schizophrenia (SZ) is one of the challenges of neuroscience. Many anatomical and functional studies have pointed to problems in brain connectivity in SZ individuals. However, little is known about the relationships between specific brain regions and impairments in brain connectivity in SZ individuals. Herein we propose a new approach using time-varying graphs and the motif synchronization method to build dynamic brain functional networks (BFNs). Dynamic BFNs were constructed from resting-state electroencephalography (rs-EEG) of 14 schizophrenia (SZ) individuals and 14 healthy controls (HCs). BFNs were evaluated based on the percentage of synchronization importance between a pair of regions (considering external and internal interactions) over time. We found differences in the directed interaction between brain regions in SZ individuals compared to the control group. Our method revealed low bilaterally directed interactions between the temporal lobes in SZ individuals compared to HCs, indicating a potential link between altered brain connectivity and the characteristic symptoms of schizophrenia. From a clinical perspective, these results shed light on developing new therapeutic approaches targeting these specific neural interactions that are altered in individuals with SZ. This knowledge allows the application of better interventions focused on restoring or compensating for interrupted connectivity patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.