Abstract
We report the effect of shape anisotropy and material properties on the directed assembly of binary suspensions composed of magnetizable ellipsoids. In a Monte Carlo simulation, we implement the ellipsoid-dipole model to calculate the pairwise dipolar interaction energy as a function of position and orientation. The analysis explores dilute suspensions of paramagnetic and diamagnetic ellipsoids with different aspect ratios in a superparamagnetic medium. We analyze the local order of binary structures as a function of particle aspect ratio, medium permeability, and dipolar interaction strength. Our results show that local order and symmetry are tunable under the influence of a uniform magnetic field when one component of the structure is dilute with respect to the other. The simulation results match previously reported experiments on the directed assembly of binary suspension of spheres. Additionally, we report the conditions on particle aspect ratios and medium properties for various structures with rotational symmetries, as well as open and enclosed structures under the influence of a uniform magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Soft matter
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.