Abstract
Gel-free shotgun phosphoproteomics of unicellular cyanobacterium Synechocystis sp. PCC 6803 has not been reported up to now. The purpose of this study is to develop directed membrane phosphoproteomic method in Synechocystis sp. Total Synechocystis membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphoprotein-stained gel bands were selectively subjected to in-gel trypsin digestion. The phosphorylation sites of the resulting peptides were determined by assigning the neutral loss of [M-H(3)PO(4)] to Ser, Thr, and Tyr residues using nano-liquid chromatography 7 Tesla Fourier transform mass spectrometry. As an initial application, 111 proteins and 33 phosphoproteins were identified containing 11 integral membrane proteins. Identified four unknown phosphoproteins with transmembrane helices were suggested to be involved in membrane migration or transporters based on BLASTP search annotations. The overall distribution of hydrophobic amino acids in pTyr was lower in frequency than that of pSer or pThr. Positively charged amino acids were abundantly revealed in the surrounding amino acids centered on pTyr. A directed shotgun membrane phosphoproteomic strategy provided insight into understanding the fundamental regulatory processes underlying Ser, Thr, and Tyr phosphorylation in multi-layered membranous cyanobacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.