Abstract
Herein, ZnO/CdS hierarchical composite was prepared through a hydrothermal and chemical bath deposition (CBD) process. Its photocatalytic H2-production performance was tested. Mass ratio of CdS acted a pivotal part in light absorption and photocatalytic properties. Noticeably, promoted photocatalytic H2-production activity of 4134 μmol g−1 h-1 was achieved by the sample with optimal CdS content. Significantly, the photoluminescence (PL) detection of hydroxyl radicals, as well as the in-situ XPS measurements was selected to verify the direct Z-scheme charge migration mechanism. This mechanism endowed the composite with strong capability for hydrogen evolution and elucidated the improved photocatalytic performance. The improvement of photocatalytic activity was due to hierarchical structure, extended visible light response and direct Z-scheme mechanism. This work will give an innovative vision in constructing direct Z-scheme photocatalytic system with great photocatalytic H2-production activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.