Abstract

Ultrathin two-dimensional (2D) nanomaterials can not only boost the interfacial charge migration and separation but also provide abundant reactive sites for the photocatalytic H2 generation. Herein, a kind of direct Z-scheme 2D/2D hybrid nanomaterial is fabricated by post-annealing atomically ultrathin Pt-loaded g-C3N4 nanosheets (Pt-CN NSs) with a thickness of ∼4.0 nm and hydrogen-treated WO3 nanosheets (HWO NSs) with a thickness of ∼2.6 nm. The strong affinity existing between the two types of nanosheets with few-layer stacking results in the formation of atomically ultrathin 2D/2D hybrid nanomaterials (Pt-CN/HWO) with intimate interfacial contact in which the strong electronic interaction and efficient charge separation lead to a direct Z-scheme electron flowing from HWO NSs to CN NSs and then to the Pt cocatalyst for catalyzing the H2 generation reaction. After optimizing the component ratio, the corresponding Pt-CN/HWO hybrid nanomaterial delivers a significantly boosted photocatalytic H2 generation activity, up to 6.2 times as high as that of the Pt-CN/WO composite containing Pt-CN NSs and WO3 nanoplates (WO NPs) without hydrogen treatment. This result reveals that the atomically ultrathin nanosheets in the 2D/2D hybrid nanomaterials can not only deliver strong electronic interaction to promote the Z-scheme mechanism for maintaining the high reduction ability of g-C3N4 and high oxidation ability of WO3 but also alleviate the charge recombination, therefore resulting in the excellent photocatalytic H2 generation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call