Abstract

The use of tetracycline hydrochloride (TCH) for veterinary, human therapy, and agriculture has risen in the past few decades, making it to become one of the most exploited antibiotics. However, TCH residue in the environment is causing issues related to the evolution of antibiotic-resistant bacteria. To address such a problem, photodegradation offers a potential solution to decompose these pollutants in wastewater and thereby mitigates negative environmental impacts. In this context, the research focuses on the use of the rare-earth metal oxide samarium orthovanadate (SmVO4) with nanorod structure, coupled with UiO-66-NH2 for the photocatalytic degradation. Their photocatalytic activity to degrade antibiotic TCH molecules is explored under simulated solar light irradiation. The integration of UiO-66-NH2 with SmVO4 enhanced the light absorption, recombination resistance, carrier lifetime (from 0.382 to 0.411ns) and specific surface area (from 67.17 to 246m2/g) of the composite system as confirmed from multiple analyses. The obtained results further indicated that SmVO4/UiO-66-NH2 nanocomposites could form a direct Z-scheme based heterojunction. Such mechanism of charge transfer leads to the effective degradation of TCH molecules up to 50% in 90min under solar light, while it is degraded only 30% in the case of bare-SmVO4 nanorods. In this work, the incorporation of UiO-66-NH2 positively influences photoelectrochemical properties and improves the overall photoredox properties of SmVO4 for the degradation of complex compounds like antibiotic TCH molecules. Therefore, UiO-66-NH2 can be proposed as an effective material to sensitize the rare-earth based photocatalytic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call