Abstract

A hot research topic in visible-light-driven photoelectrocatalytic (PEC) oxidation technology is the development of superior photoanode materials. The design of the photoanode system with a direct Z-scheme charge transfer mechanism is crucial to achieving effective charge separation for sustainable photoelectrocatalysis. Here, a novel Bi/Bi2S3/α-MoO3 heterostructure was successfully assembled by a simple and feasible strategy. The direct Z-scheme heterogeneous formed between Bi2S3 and α-MoO3 has the advantages of low resistance, high optical response current and the surface plasmon resonance (SPR) effect of Bi nanoparticles (Bi NPs). Thus, the efficiency of photogenerated carrier separation and transfer is further enhanced, and the catalytic activity is significantly improved. It is impressive that the unique photoanode has achieved a maximum removal efficiency of 85.8% of tetracycline (TC) pollutants under visible light irradiation within 60 min and has excellent stability, which is expected to degrade antibiotics efficiently and environmentally in harsh environments. These characteristics give Bi/Bi2S3/α-MoO3 promising candidates for practical applications in antibiotic degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call