Abstract

In this paper a vehicle dynamics control system is designed to compensate the change in vehicle handling dynamics of lightweight vehicles due to variation in loading conditions and the effectiveness of the proposed design is verified by simulations and an experimental study using a fixed-base driving simulator. Considering the electrification of future mobility, the target vehicle of this research is a lightweight vehicle equipped with in-wheel motors that can generate an additional direct yaw moment by transverse distribution of traction forces to control vehicle yawing as well as side slip motions. Previously, the change in vehicle handling dynamics for various loading conditions have been analyzed by using a linear two-wheel vehicle model in planar motion and a control law of the DYC system based on feed-forward of front steering angular velocity and feedback of vehicle yaw rate. The feed-forward controller is derived based on the model following control with approximation of the vehicle dynamics to 1st-order transfer function. To make the determination of the yaw rate feedback gain model-based and adaptable to various vehicle velocity conditions, this paper selects a method where the yaw rate feedback gain in the DYC system is determined in a way that the steady-state yaw rate gain of the controlled loaded vehicle matches the gain of the unloaded vehicle. The DYC system is simulated in a single lane change maneuver to confirm the improved responsiveness of the vehicle while simulations of a double-lane change maneuver with a driver steering model confirms the effectiveness of the DYC system to support tracking control. Finally, the effectiveness of the proposed DYC system is also verified in an experimental study with ten human drivers using a fix-based driving simulator.

Highlights

  • Electrification can reduce the energy consumption and increase the energy efficiency of future mobility

  • These results show that the handling dynamics with the Direct Yaw Moment Control (DYC) system is less sensitive to the loading condition and, the handling quality is improved

  • This paper first illustrates the change of handling dynamics of a 500-kg class lightweight vehicle under various loading conditions

Read more

Summary

Introduction

Electrification can reduce the energy consumption and increase the energy efficiency of future mobility. Sci. 2019, 9, 1151 itself [4]. Lightweight vehicle designs are facing challenges for everyday loading conditions because the driving dynamic changes significantly with large load-to-curb weight ratios [1]. This effect grows progressively with the reduction of the vehicle curb weight. Passive driving dynamics change significantly with the loading condition affecting the handling dynamics This increase in load sensitivity can lead to changing and a large variation in the handling dynamics which can be perceived as uncomfortable and even unsafe by the human driver [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call