Abstract

In this work, three-dimensional (3D) periodic TiO2 bio-ceramic scaffolds were created by continuous filament writing with TiO2 sol-gel ink followed by sintering. The TiO2 sol-gel ink has the advantage of creating 3D bio-ceramic scaffolds with finer feature size than commonly used ceramic powder based ink systems. The structure, pore sizes, and interconnectivity could be controlled through 3D structure design and printing parameter adjustment. To evaluate the potential of these 3D TiO2 bio-ceramic scaffolds for bone tissue engineering, the mouse osteoblastic cell line MC3T3-E1 was cultured on them. The observed good viability demonstrated that 3D TiO2 bio-ceramic scaffolds created by direct-writing technique provide a biocompatible environment that favors cell growth and attachment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.