Abstract

The need for energy dense microbatteries with miniature dimensions has prompted the development of unconventional materials, cell geometries, and processing methods. This work will highlight our materials investigations, deposition methods and the device performance of a printed zinc–manganese dioxide rechargeable microbattery utilizing an ionic liquid gel electrolyte. We have developed a direct write dispenser printing method with the ability to fabricate multilayer structures and precisely deposit and pattern these components onto any substrates. The use of a unique room-temperature ionic liquid swelled into a polymer to form a gel electrolyte with solid-like mechanical strength and liquid-like ion transport properties has enabled the simple fabrication of stacked microbattery structures with the potential to be easily integrated directly onto a microdevice substrate. Initial microbattery tests and cycle behavior are discussed, and after an initial activation of the cathode material, an experimental cell discharge capacity and energy density of 0.98 mA h cm−2 and 1.2 mW h cm−2 were measured, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call