Abstract

Phytoremediation systems are known to reduce groundwater contamination by at least three major mechanisms: plant uptake, phytovolatilization, and enhanced rhizosphere bioremediation. The potential for such systems to enhance a fourth remediation pathway--direct surface volatilization of contaminants through the subsurface and into the atmosphere-has not yet been investigated in the field. A vertical flux chamber was used to measure direct surface volatilization of naphthalene over nine months at a creosote-contaminated site in Oneida, Tennessee, where a phytoremediation system of poplar trees was installed in 1997. A maximum flux of 23 microg m(-2) h(-1) was measured in August 2004, and naphthalene removal by the direct volatilization pathway is estimated to be 50 g yr(-1) at this site. Results suggest that direct volatilization fluxes are most strongly affected by the groundwater level (thickness of the saturated zone), soil moisture, and changes in atmospheric pressure. At this site, transpiration and canopy interception resulting from the phytoremediation system significantly reduce the saturated thickness, increasing the vertical concentration gradient of naphthalene in the groundwater and thus increasing the upward diffusive flux of naphthalene through the subsurface. The presence of the trees, therefore, promotes direct volatilization into the atmosphere. This research represents the first known measurement of naphthalene attenuation by the direct volatilization pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.