Abstract
Magnetic skyrmions are topologically stable swirling spin textures that appear as particle-like objects in two-dimensional (2D) systems. Here, utilizing scalar magnetic X-ray tomography under applied magnetic fields, we report the direct visualization of the three-dimensional (3D) shape of individual skyrmion strings in the room-temperature skyrmion-hosting non-centrosymmetric compound Mn1.4Pt0.9Pd0.1Sn. Through the tomographic reconstruction of the 3D distribution of the [001] magnetization component on the basis of transmission images taken at various angles, we identify a skyrmion string running through the entire thickness of the sample, as well as various defect structures, such as the interrupted and Y-shaped strings. The observed point defect may represent the Bloch point serving as an emergent magnetic monopole, as proposed theoretically. Our tomographic approach with a tunable magnetic field paves the way for direct visualization of the structural dynamics of individual skyrmion strings in 3D space, which will contribute to a better understanding of the creation, annihilation and transfer of these topological objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.