Abstract

Surface melting of ice crystals forms quasi-liquid layers (QLLs) on ice surfaces, and affects a wide variety of natural phenomena. Since QLLs enhance various chemical reactions in ice clouds, the formation of QLLs by atmospheric gases has been studied intensively. However, such studies were performed using spectroscopy techniques, which have low spatial resolution. Here we show the first direct visualization of QLLs on ice basal faces in the presence of hydrogen chloride (HCl) gas (model atmospheric gas) by advanced optical microscopy, which can visualize individual 0.37 nm-thick elementary steps on ice crystal surfaces. We found that the HCl gas induced the appearances of QLLs with a droplet shape in the temperature range from −15.0 to −1.5 °C, where no QLL appears in the absence of HCl gas. This result indicates that HCl gas adsorbed on ice crystal surfaces probably changed the surface structure of ice crystals and then induced the subsequent melting of ice surfaces. We also observed the movement, shape...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.